Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Pharmacol Res Perspect ; 8(2): e00573, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32125783

RESUMO

A phage-derived human monoclonal antibody against VEGF-C was developed as a potential anti-tumor therapeutic and exhibited fast clearance in preclinical species, with notably faster clearance in serum than in plasma. The purpose of this work was to understand the factors contributing to its fast clearance. In vitro incubations in animal and human blood, plasma, and serum were conducted with radiolabeled anti-VEGF-C to determine potential protein and cell-based interactions with the antibody as well as any matrix-dependent recovery dependent upon the matrix. A tissue distribution study was conducted in mice with and without heparin infusion in order to identify a tissue sink and determine whether heparin could affect antibody recovery from serum and/or plasma. Incubation of radiolabeled anti-VEGF-C in human and animal blood, plasma, or serum revealed that the antibody formed a complex with an endogenous protein, likely VEGF-C. This complex was trapped within the blood clot during serum preparation from blood, but not within the blood cell pellet during plasma preparation. Low level heparin infusion in mice slowed down clot formation during serum preparation and allowed for better recovery of the radiolabeled antibody in serum. No tissue sink was found in mice. Thus, during this characterization, we determined that the blood sampling matrix greatly impacted the amount of antibody recovered in the samples, therefore, altering its derived pharmacokinetic parameters. Target biology should be considered when selecting appropriate sampling matrices for PK analysis.


Assuntos
Anticorpos Monoclonais/farmacocinética , Fator C de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Anticorpos Monoclonais/sangue , Artefatos , Coagulação Sanguínea , Feminino , Humanos , Macaca fascicularis , Camundongos Nus , Ratos Sprague-Dawley , Distribuição Tecidual , Fator C de Crescimento do Endotélio Vascular/imunologia
2.
AAPS J ; 19(1): 130-140, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27679517

RESUMO

Antibody drug conjugates (ADC), in which small molecule cytotoxic agents are non-specifically linked to antibodies, can enable targeted delivery of chemotherapeutics to tumor cells. ADCs are often produced and administered as a mixture of conjugated antibodies with different drug to antibody ratios (DAR) resulting in complex and heterogeneous disposition kinetics. We developed a mechanism-based platform model that can describe and predict the complex pharmacokinetic (PK) behavior of ADCs with protease-cleavable valine-citrulline (VC) linker linked to Monomethylmonomethyl auristatin F/E by incorporating known mechanisms of ADC disposition. The model includes explicit representation of all DAR species; DAR-dependent sequential deconjugation of the drug, resulting in the conversion of higher DAR to lower DAR species; and DAR-dependent antibody/ADC clearance. PK profiles of multiple analytes (total antibody, drug-conjugated antibody, and/or antibody-conjugated drug) for different ADC molecules and targets in rodents and cynomolgus monkeys were used for model development. The integrated cross-species model was successful in capturing the multi-analyte PK profiles after administration of purified ADCs with defined DAR species and ADCs with mixtures of DAR. Human PK predictions for DSTP3086S (anti-STEAP1-vc-MMAE) with the platform model agreed well with PK (total antibody and antibody-conjugated drug concentrations) measurements in the dose-ranging phase I clinical study. The integrated model is applicable to various other ADCs with different formats, conjugated drugs, and linkers, and provides a valuable tool for the exploration of mechanisms governing disposition of ADCs and enables translational predictions.


Assuntos
Anticorpos Monoclonais/farmacocinética , Antineoplásicos/farmacocinética , Imunoconjugados/farmacocinética , Modelos Biológicos , Oligopeptídeos/farmacocinética , Animais , Simulação por Computador , Humanos , Oligopeptídeos/química , Pesquisa Translacional Biomédica
3.
AAPS J ; 18(4): 948-59, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27075465

RESUMO

The quantitative relationship between neonatal Fc receptor (FcRn) binding affinity at both acidic and physiological pH and the pharmacokinetics of protein engineered FcRn IgG1 variants has not yet been reported. Our objective was to develop a quantitatively mechanism-based competitive binding model to describe the effects of FcRn binding affinity at acidic and physiological pH on the pharmacokinetics of anti-VEGF IgG1 antibodies when both endogenous and exogenous antibodies are competing for the same FcRn. Pharmacokinetic (PK) and FcRn binding data from five Fc variants of humanized anti-VEGF IgG1 monoclonal antibodies with wide range of FcRn binding affinity were used for the analysis. Sixty-seven anti-VEGF IgG1 antibody-treated animals and 25 control animals with simulated endogenous IgG levels were used to develop the final model. A hybrid iterative two stages and Monte Carlo parametric expectation-maximization method was used to obtain the final model parameters estimates. The final model well described the observed PK data. Quantitative FcRn binding affinity-pharmacokinetics relationships was constructed to provide important biological insights in better understanding of the FcRn binding effect on pharmacokinetics of anti-VEGF IgG1 antibodies in cynomolgus monkeys and served as an important model-based drug discovery platform to guide the design and development of the future generation of anti-VEGF or other therapeutic IgG1 antibodies.


Assuntos
Imunoglobulina G/imunologia , Macaca fascicularis/imunologia , Animais , Anticorpos Monoclonais/metabolismo , Bevacizumab , Ligação Competitiva , Antígenos de Histocompatibilidade Classe I/imunologia , Ligação Proteica , Receptores Fc/imunologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Biopharm Drug Dispos ; 37(2): 51-65, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25869767

RESUMO

Currently, more than 350 monoclonal antibodies (mAbs) and mAb derivatives are under development as therapeutics. The prediction of mAb pharmacokinetics (PK)/pharmacodynamics (PD) plays a key role in starting dose selection for first-in-human (FIH) studies. This article presents a brief overview of the biology and mechanisms of absorption, distribution, metabolism and excretion (ADME) for mAbs. In addition, a detailed review of mAb human PK/PD prediction from nonclinical data is provided, including allometry for mAbs with linear or nonlinear PK, species-invariant time method, physiologically based PK (PBPK) modeling and target-mediated drug disposition (TMDD) model, bioavailability projection and immunogenicity impact on PK prediction. Finally, from an industry perspective a decision tree of mAb human PK projection is proposed to facilitate drug development.


Assuntos
Anticorpos Monoclonais/farmacocinética , Animais , Anticorpos Monoclonais/farmacologia , Árvores de Decisões , Avaliação Pré-Clínica de Medicamentos , Humanos , Modelos Biológicos
5.
Mol Pharm ; 11(5): 1591-8, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24702191

RESUMO

A solid understanding of physiology is beneficial in optimizing drug delivery and in the development of clinically predictive models of drug disposition kinetics. Although an abundance of data exists in the literature, it is often confounded by the use of various experimental methods and a lack of consensus in values from different sources. To help address this deficiency, we sought to directly compare three important vascular parameters at the tissue level using the same experimental approach in both mice and rats. Interstitial volume, vascular volume, and blood flow were radiometrically measured in selected harvested tissues of both species by extracellular marker infusion, red blood cell labeling, and rubidium chloride bolus distribution, respectively. The latter two parameters were further compared by whole-body autoradiographic imaging. An overall good interspecies agreement was observed for interstitial volume and blood flow on a weight-normalized basis in most tissues. In contrast, the measured vascular volumes of most rat tissues were higher than for mouse. Mice and rats, the two most commonly utilized rodent species in translational drug development, should not be considered as interchangeable in terms of vascular volume per gram of tissue. This will be particularly critical in biodistribution studies of drugs, as the amount of drug in the residual blood of tissues is often not negligible, especially for biologic drugs (e.g., antibodies) having long circulation half-lives. Physiologically based models of drug pharmacokinetics and/or pharmacodynamics also rely on accurate knowledge of biological parameters in tissues. For tissue parameters with poor interspecies agreement, the significance and possible drivers are discussed.


Assuntos
Volume Sanguíneo/fisiologia , Camundongos/fisiologia , Ratos/fisiologia , Animais , Peso Corporal/fisiologia , Feminino , Modelos Teóricos , Ratos Sprague-Dawley
6.
MAbs ; 6(3): 689-96, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24572100

RESUMO

The neonatal Fc receptor (FcRn) plays an important and well-known role in antibody recycling in endothelial and hematopoietic cells and thus it influences the systemic pharmacokinetics (PK) of immunoglobulin G (IgG). However, considerably less is known about FcRn's role in the metabolism of IgG within individual tissues after intravenous administration. To elucidate the organ distribution and gain insight into the metabolism of humanized IgG1 antibodies with different binding affinities FcRn, comparative biodistribution studies in normal CD-1 mice were conducted. Here, we generated variants of herpes simplex virus glycoprotein D-specific antibody (humanized anti-gD) with increased and decreased FcRn binding affinity by genetic engineering without affecting antigen specificity. These antibodies were expressed in Chinese hamster ovary cell lines, purified and paired radiolabeled with iodine-125 and indium-111. Equal amounts of I-125-labeled and In-111-labeled antibodies were mixed and intravenously administered into mice at 5 mg/kg. This approach allowed us to measure both the real-time IgG uptake (I-125) and cumulative uptake of IgG and catabolites (In-111) in individual tissues up to 1 week post-injection. The PK and distribution of the wild-type IgG and the variant with enhanced binding for FcRn were largely similar to each other, but vastly different for the rapidly cleared low-FcRn-binding variant. Uptake in individual tissues varied across time, FcRn binding affinity, and radiolabeling method. The liver and spleen emerged as the most concentrated sites of IgG catabolism in the absence of FcRn protection. These data provide an increased understanding of FcRn's role in antibody PK and catabolism at the tissue level.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Receptores Fc/metabolismo , Animais , Animais Recém-Nascidos , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/genética , Células CHO , Cricetinae , Cricetulus , Feminino , Variação Genética , Humanos , Imunoglobulina G/administração & dosagem , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Radioisótopos de Índio/administração & dosagem , Radioisótopos de Índio/farmacocinética , Radioisótopos do Iodo/administração & dosagem , Radioisótopos do Iodo/farmacocinética , Camundongos , Proteólise , Receptores Fc/genética , Distribuição Tecidual
7.
Eur J Pharm Sci ; 51: 51-8, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23999033

RESUMO

PURPOSE: Several neonatal Fc receptor (FcRn) variants of an anti-tumor necrosis factor (TNF)-α humanized monoclonal IgG antibodies (mAbs) were developed but the effect of their differential FcRn binding affinities on pharmacokinetic (PK) behavior were difficult to be definitively measured in vivo due to formation of anti-therapeutic antibody (ATA). A semi-mechanistic model was developed to investigate the quantitative relationship between the FcRn binding affinity and PK of mAbs in cynomolgus monkey with the presence of ATA. METHODS: PK and ATA data from cynomolgus monkeys which received a single intravenous dose of adalimumab, wild-type or two FcRn variant (N434H and N434A) anti-TNF-α mAbs were included in the analysis. Likelihood-based censored data handling method was used to include many PK observations with BQL values for model development. A fully integrated PK-ATA model was developed and used to fit simultaneously to the PK/ATA data. RESULTS AND CONCLUSIONS: The PK and ATA time-profiles and effect of FcRn-binding affinity on PK of mAbs were well described by the model and the parameters were estimated with good precision. The model was used successfully to construct quantitative relationships between FcRn binding affinity and PK of anti-TNF-α mAbs in the presence of the ATA-mediated elimination and interferences.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacocinética , Antígenos de Histocompatibilidade Classe I/imunologia , Ligação Proteica/imunologia , Receptores Fc/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Macaca fascicularis
8.
J Med Chem ; 56(23): 9418-26, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24131491

RESUMO

A known limitation of iodine radionuclides for labeling and biological tracking of receptor targeted proteins is the tendency of iodotyrosine to rapidly diffuse from cells following endocytosis and lysosomal degradation. In contrast, radiometal-chelate complexes such as indium-111-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (In-111-DOTA) accumulate within target cells due to the residualizing properties of the polar, charged metal-chelate-amino acid adduct. Iodine radionuclides boast a diversity of nuclear properties and chemical means for incorporation, prompting efforts to covalently link radioiodine with residualizing molecules. Herein, we describe the Ugi-assisted synthesis of [I-125]HIP-DOTA, a 4-hydroxy-3-iodophenyl (HIP) derivative of DOTA, and demonstration of its residualizing properties in a murine xenograft model. Overall, this study displays the power of multicomponent synthesis to yield a versatile radioactive probe for antibodies across multiple therapeutic areas with potential applications in both preclinical biodistribution studies and clinical radioimmunotherapies.


Assuntos
Anticorpos Monoclonais Murinos/metabolismo , Dipeptídeos/síntese química , Compostos Heterocíclicos com 1 Anel/síntese química , Imunoconjugados/química , Succinimidas/síntese química , Animais , Anticorpos Monoclonais Murinos/química , Anticorpos Monoclonais Murinos/uso terapêutico , Complexos de Coordenação/metabolismo , Dipeptídeos/metabolismo , Compostos Heterocíclicos com 1 Anel/metabolismo , Imunoconjugados/metabolismo , Radioisótopos de Índio , Camundongos , Radioimunoterapia , Succinimidas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Mol Pharm ; 10(5): 1514-21, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23383983

RESUMO

The development of clinically relevant preclinical models that mimic the hallmarks of neurodegenerative disease is an ongoing pursuit in early drug development. In particular, robust physiological characterization of central nervous system (CNS) disease models is necessary to predict drug delivery to target tissues and to correctly interpret pharmacodynamic responses to disease-modifying therapeutic candidates. Efficient drug delivery across the blood-CNS barrier is a particularly daunting task, prompting our strategy to evaluate the biodistribution of five distinct molecular probes in a well-characterized mouse model of neurodegeneration. A transgenic mouse model of amyotrophic lateral sclerosis was selected based on a phenotype resembling clinical symptoms, including loss of motor neurons from the spinal cord and paralysis in one or more limbs, due to expression of a G93A mutant form of human superoxide dismutase (SOD1). The tissue distributions of two proteins, albumin and a representative immunoglobulin G antibody, as well as two blood flow markers, the lipophilic blood flow marker Ceretec (i.e., (99m)Tc-HMPAO) and the polar ionic tracer, rubidium-86 chloride ((86)RbCl), were measured following intravenous injection in SOD1(G93A) and age-matched control mice. The radiopharmaceutical TechneScan PYP was also used to measure the distribution of (99m)Tc-labeled red blood cells as a blood pool marker. Both the antibody and (86)Rb were able to cross the blood-spinal cord barrier in SOD1(G93A) mice to a greater extent than in control mice. Although the biodistribution patterns of antibody, albumin, and RBCs were largely similar, notable differences were detected in muscle and skin. Moreover, vastly different biodistribution patterns were observed for a lipophilic and polar perfusion agent, with SOD1(G93A) mutation resulting in reduced renal filtration rates for the former but not the latter. Overall, the multiprobe strategy provided an opportunity to efficiently collect an abundance of physiological information, including the degree and regional extent of blood-CNS barrier permeability, in a preclinical model of neurodegeneration.


Assuntos
Degeneração Neural/fisiopatologia , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Volume Sanguíneo , Barreira Hematoencefálica/fisiologia , Circulação Cerebrovascular , Cloretos/farmacocinética , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Imunoglobulina G/metabolismo , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Transporte Proteico , Cintilografia , Compostos Radiofarmacêuticos/farmacocinética , Rubídio/farmacocinética , Radioisótopos de Rubídio/farmacocinética , Superóxido Dismutase/genética , Tecnécio Tc 99m Exametazima/farmacocinética , Distribuição Tecidual
10.
AAPS J ; 14(3): 612-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22648903

RESUMO

Monoclonal antibodies have provided many validated and potential new therapeutic candidates for various diseases encompassing the realms of neurology, ophthalmology, immunology, and especially oncology. The mechanism of action for these biological molecules typically involves specific binding to a soluble ligand or cell surface protein in order to block or alter a molecular pathway, induce a desired cellular response, or deplete a target cell. Many antigens reside within the interstitial space, the fluid-filled compartment that lies between the outer endothelial vessel wall and the plasma membranes of cells. This mini-review examines the concepts relevant to the kinetics and behavior of antibodies within the interstitium with a special emphasis on radiometric measurement of quantitative pharmacology. Molecular probes are discussed to outline chemical techniques, selection criteria, data interpretation, and relevance to the study of antibody pharmacokinetics. The importance of studying the tissue uptake of antibodies at a compartmental level is highlighted, including a brief overview of receptor occupancy and its interpretation in radiotracer studies. Experimental methods for measuring the spatial composition of tissues are examined in terms of relative vascular, interstitial, and cellular volumes using solid tumors as a representative example. Experimental methods and physiologically based pharmacokinetic modeling are introduced as distinct approaches to distinguish between free and bound fractions of interstitial antibody. Overall, the review outlines the available methods for pharmacokinetic measurements of antibodies and physiological measurements of the compartments that they occupy, while emphasizing that such approaches may not fully capture the complexities of dynamic, heterogeneous tumors and other tissues.


Assuntos
Anticorpos/metabolismo , Animais , Humanos , Distribuição Tecidual
11.
AAPS J ; 14(3): 554-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22610647

RESUMO

Monoclonal antibodies are increasingly being developed to treat multiple disease areas, including those related to oncology, immunology, neurology, and ophthalmology. There are multiple factors, such as charge, size, neonatal Fc receptor (FcRn) binding affinity, target affinity and biology, immunoglobulin G (IgG) subclass, degree and type of glycosylation, injection route, and injection site, that could affect the pharmacokinetics (PK) of these large macromolecular therapeutics, which in turn could have ramifications on their efficacy and safety. This minireview examines how characteristics of the antibodies could be altered to change their PK profiles. For example, it was observed that a net charge modification of at least a 1-unit shift in isoelectric point altered antibody clearance. Antibodies with enhanced affinity for FcRn at pH 6.0 display longer serum half-lives and slower clearances than wild type. Antibody fragments have different clearance rates and tissue distribution profiles than full length antibodies. Fc glycosylation is perceived to have a minimal effect on PK while that of terminal high mannose remains unclear. More investigation is warranted to determine if injection route and/or site impacts PK. Nonetheless, a better understanding of the effects of all these variations may allow for the better design of antibody therapeutics.


Assuntos
Anticorpos/uso terapêutico , Glicosilação , Ponto Isoelétrico
12.
MAbs ; 4(2): 243-55, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22453096

RESUMO

Subcutaneous (SC) delivery is a common route of administration for therapeutic monoclonal antibodies (mAbs) with pharmacokinetic (PK)/pharmacodynamic (PD) properties requiring long-term or frequent drug administration. An ideal in vivo preclinical model for predicting human PK following SC administration may be one in which the skin and overall physiological characteristics are similar to that of humans. In this study, the PK properties of a series of therapeutic mAbs following intravenous (IV) and SC administration in Göttingen minipigs were compared with data obtained previously from humans. The present studies demonstrated: (1) minipig is predictive of human linear clearance; (2) the SC bioavailabilities in minipigs are weakly correlated with those in human; (3) minipig mAb SC absorption rates are generally higher than those in human and (4) the SC bioavailability appears to correlate with systemic clearance in minipigs. Given the important role of the neonatal Fc-receptor (FcRn) in the PK of mAbs, the in vitro binding affinities of these IgGs against porcine, human and cynomolgus monkey FcRn were tested. The result showed comparable FcRn binding affinities across species. Further, mAbs with higher isoelectric point tended to have faster systemic clearance and lower SC bioavailability in both minipig and human. Taken together, these data lend increased support for the use of the minipig as an alternative predictive model for human IV and SC PK of mAbs.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/farmacocinética , Modelos Imunológicos , Administração Intravenosa , Animais , Anticorpos Monoclonais/imunologia , Feminino , Humanos , Injeções Subcutâneas , Masculino , Suínos , Porco Miniatura
13.
MAbs ; 4(1): 101-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22327433

RESUMO

The neonatal Fc receptor (FcRn) plays an important and well-known role in immunoglobulin G (IgG) catabolism; however, its role in the disposition of IgG after subcutaneous (SC) administration, including bioavailability, is relatively unknown. To examine the potential effect of FcRn on IgG SC bioavailability, we engineered three anti-amyloid ß monoclonal antibody (mAb) reverse chimeric mouse IgG2a (mIgG2a) Fc variants (I253A.H435A, N434H and N434Y) with different binding affinities to mouse FcRn (mFcRn) and compared their SC bioavailability to that of the wild-type (WT) mAb in mice. Our results indicated that the SC bioavailability of mIgG2a was affected by mFcRn-binding affinity. Variant I253A.H435A, which did not bind to mFcRn at either pH 6.0 or pH 7.4, had the lowest bioavailability (41.8%). Variant N434Y, which had the greatest increase in binding affinity at both pH 6.0 and pH 7.4, had comparable bioavailability to the WT antibody (86.1% vs. 76.3%), whereas Variant N434H, which had modestly increased binding affinity at pH 6.0 to mFcRn and affinity comparable to the WT antibody at pH 7.4, had the highest bioavailability (94.7%). A semi-mechanism-based pharmacokinetic model, which described well the observed data with the WT antibody and variant I253A.H435A, is consistent with the hypothesis that the decreased bioavailability of variant I253A.H435A was due to loss of the FcRn-mediated protection from catabolism at the absorption site. Together, these data demonstrate that FcRn plays an important role in SC bioavailability of therapeutic IgG antibodies.


Assuntos
Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacocinética , Afinidade de Anticorpos/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoglobulina G/metabolismo , Receptores Fc/metabolismo , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Disponibilidade Biológica , Humanos , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Injeções Subcutâneas , Camundongos , Camundongos SCID , Ligação Proteica
14.
Mol Cancer Ther ; 11(3): 752-62, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22222630

RESUMO

Both human epidermal growth factor receptor 2 (HER-2/neu) and VEGF overexpression correlate with aggressive phenotypes and decreased survival among breast cancer patients. Concordantly, the combination of trastuzumab (anti-HER2) with bevacizumab (anti-VEGF) has shown promising results in preclinical xenograft studies and in clinical trials. However, despite the known antiangiogenic mechanism of anti-VEGF antibodies, relatively little is known about their effects on the pharmacokinetics and tissue distribution of other antibodies. This study aimed to measure the disposition properties, with a particular emphasis on tumor uptake, of trastuzumab in the presence or absence of anti-VEGF. Radiolabeled trastuzumab was administered alone or in combination with an anti-VEGF antibody to mice bearing HER2-expressing KPL-4 breast cancer xenografts. Biodistribution, autoradiography, and single-photon emission computed tomography-X-ray computed tomography imaging all showed that anti-VEGF administration reduced accumulation of trastuzumab in tumors despite comparable blood exposures and similar distributions in most other tissues. A similar trend was also observed for an isotype-matched IgG with no affinity for HER2, showing reduced vascular permeability to macromolecules. Reduced tumor blood flow (P < 0.05) was observed following anti-VEGF treatment, with no significant differences in the other physiologic parameters measured despite immunohistochemical evidence of reduced vascular density. In conclusion, anti-VEGF preadministration decreased tumor uptake of trastuzumab, and this phenomenon was mechanistically attributed to reduced vascular permeability and blood perfusion. These findings may ultimately help inform dosing strategies to achieve improved clinical outcomes.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais/farmacologia , Neoplasias da Mama/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais Humanizados/química , Afinidade de Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Humanos , Imuno-Histoquímica , Radioisótopos de Índio/química , Radioisótopos de Índio/farmacocinética , Radioisótopos do Iodo/química , Radioisótopos do Iodo/farmacocinética , Camundongos , Camundongos Nus , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Distribuição Tecidual , Tomografia Computadorizada por Raios X , Trastuzumab , Fator A de Crescimento do Endotélio Vascular/imunologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Br J Pharmacol ; 166(1): 368-77, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22074316

RESUMO

BACKGROUND AND PURPOSE: Neuropilin-1 (NRP1) is a VEGF receptor that is widely expressed in normal tissues and is involved in tumour angiogenesis. MNRP1685A is a rodent and primate cross-binding human monoclonal antibody against NRP1 that exhibits inhibition of tumour growth in NPR1-expressing preclinical models. However, widespread NRP1 expression in normal tissues may affect MNRP1685A tumour uptake. The objective of this study was to assess MNRP1685A biodistribution in tumour-bearing mice to understand the relationships between dose, non-tumour tissue uptake and tumour uptake. EXPERIMENTAL APPROACH: Non-tumour-bearing mice were given unlabelled MNRP1685A at 10 mg·kg(-1) . Tumour-bearing mice were given (111) In-labelled MNRP1685A along with increasing amounts of unlabelled antibody. Blood and tissues were collected from all animals to determine drug concentration (unlabelled) or radioactivity level (radiolabelled). Some animals were imaged using single photon emission computed tomography - X-ray computed tomography. KEY RESULTS: MNRP1685A displayed faster serum clearance than pertuzumab, indicating that target binding affected MNRP1685A clearance. I.v. administration of (111) In-labelled MNRP1685A to tumour-bearing mice yielded minimal radioactivity in the plasma and tumour, but high levels in the lungs and liver. Co-administration of unlabelled MNRP1685A with the radiolabelled antibody was able to competitively block lungs and liver radioactivity uptake in a dose-dependent manner while augmenting plasma and tumour radioactivity levels. CONCLUSIONS AND IMPLICATIONS: These results indicate that saturation of non-tumour tissue uptake is required in order to achieve tumour uptake and acceptable exposure to antibody. Utilization of a rodent and primate cross-binding antibody allows for translation of these results to clinical settings.


Assuntos
Anticorpos Monoclonais/farmacocinética , Neoplasias do Colo/tratamento farmacológico , Neuropilina-1/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais Humanizados/farmacocinética , Neoplasias do Colo/patologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Radioisótopos de Índio/química , Radioisótopos do Iodo/química , Camundongos , Camundongos Nus , Imagem Multimodal/métodos , Neoplasias Experimentais , Tomografia por Emissão de Pósitrons , Distribuição Tecidual , Tomografia Computadorizada por Raios X
16.
Science ; 335(6064): 89-92, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22174130

RESUMO

Lysosomal storage diseases (LSDs) are a group of heterogeneous disorders caused by defects in lysosomal enzymes or transporters, resulting in accumulation of undegraded macromolecules or metabolites. Macrophage numbers are expanded in several LSDs, leading to histiocytosis of unknown pathophysiology. Here, we found that mice lacking the equilibrative nucleoside transporter 3 (ENT3) developed a spontaneous and progressive macrophage-dominated histiocytosis. In the absence of ENT3, defective apoptotic cell clearance led to lysosomal nucleoside buildup, elevated intralysosomal pH, and altered macrophage function. The macrophage accumulation was partly due to increased macrophage colony-stimulating factor and receptor expression and signaling secondary to the lysosomal defects. These studies suggest a cellular and molecular basis for the development of histiocytosis in several human syndromes associated with ENT3 mutations and potentially other LSDs.


Assuntos
Histiocitose/fisiopatologia , Homeostase , Lisossomos/fisiologia , Macrófagos/fisiologia , Proteínas de Transporte de Nucleosídeos/fisiologia , Adenosina/metabolismo , Animais , Apoptose , Contagem de Células , Proliferação de Células , Células Cultivadas , Humanos , Concentração de Íons de Hidrogênio , Listeriose/imunologia , Listeriose/microbiologia , Doenças por Armazenamento dos Lisossomos/fisiopatologia , Lisossomos/ultraestrutura , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mielopoese , Proteínas de Transporte de Nucleosídeos/genética , Fagocitose , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Transdução de Sinais , Timócitos/imunologia , Timócitos/fisiologia
17.
MAbs ; 4(6): 724-31, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23778267

RESUMO

Modulating the binding affinities to IgE or changing the FcγR binding properties of anti-IgE antibodies offers an opportunity to enhance the therapeutic potential of anti-IgE antibodies, but the influence of increased affinity to IgE or reduced Fc effector function on the pharmacological properties of anti-IgE therapies remains unclear. Our studies were designed to characterize the pharmacokinetics, pharmacodynamics and immune-complex distribution of two high-affinity anti-IgE monoclonal antibodies, high-affinity anti-IgE antibody (HAE) 1 and 2, in mice and monkeys. HAE1, also known as PRO98498, is structurally similar to omalizumab (Xolair®), a humanized anti-IgE IgG1 marketed for the treatment of asthma, but differs by 9 amino acid changes in the complementarity-determining region resulting in a 23-fold improvement in affinity. HAE2 is similar to HAE1, but its Fc region was altered to reduce binding to Fcγ receptors. As expected given the decreased binding to Fcγ receptors, systemic exposure to pre-formed HAE2:IgE complexes in mice was greater (six-fold) and distribution to the liver lower (four-fold) compared with HAE1:IgE complexes. In monkeys, systemic exposure to HAE1 was similar to that previously observed for omalizumab in this species, but required comparatively lower serum drug concentrations to suppress free IgE levels. HAE2 treatment resulted in greater exposure and greater increase of total IgE, relative to HAE1, because of decreased clearance of HAE2:IgE complexes. Overall, these data suggest that increased binding affinity to IgE may provide a more effective therapeutic for asthma patients, and that retaining FcγR binding of the anti-IgE antibody is important for elimination of anti-IgE:IgE complexes.


Assuntos
Anticorpos Monoclonais/farmacocinética , Afinidade de Anticorpos , Asma/terapia , Receptores Fc/metabolismo , Animais , Anticorpos Anti-Idiotípicos/farmacologia , Anticorpos Anti-Idiotípicos/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Afinidade de Anticorpos/genética , Afinidade de Anticorpos/imunologia , Complexo Antígeno-Anticorpo/metabolismo , Asma/imunologia , Haplorrinos , Humanos , Imunoglobulina E/imunologia , Taxa de Depuração Metabólica , Camundongos , Omalizumab , Ligação Proteica/genética , Receptores Fc/genética
18.
MAbs ; 4(6): 753-60, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23778268

RESUMO

A majority of human therapeutic antibody candidates show pharmacokinetic properties suitable for clinical use, but an unexpectedly fast antibody clearance is sometimes observed that may limit the clinical utility. Pharmacokinetic data in cynomolgus monkeys collected for a panel of 52 antibodies showed broad distribution of target-independent clearance values (2.4-61.3 mL/day/kg), with 15 (29%) having clearance > 10 mL/day/kg. Alteration in the interaction with the recycling FcRn receptor did not account for the faster than expected clearance observed for the antibodies; off-target binding was presumed to account for the fast clearance. We developed an assay based on ELISA detection of non-specific binding to baculovirus particles that can identify antibodies having increased risk for fast clearance. This assay can be used during lead generation or optimization to identify antibodies with increased risk of having fast clearance in both humans and cynomolgus monkeys, and thus increase the likelihood of obtaining a suitable drug candidate.


Assuntos
Anticorpos Monoclonais/metabolismo , Taxa de Depuração Metabólica , Animais , Baculoviridae/imunologia , Descoberta de Drogas , Ensaio de Imunoadsorção Enzimática , Humanos , Macaca fascicularis , Ligação Proteica , Risco Ajustado , Vírion/metabolismo
19.
Sci Transl Med ; 3(101): 101ra92, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21937757

RESUMO

An important goal for personalized health care is the identification of biomarkers that predict the likelihood of treatment responses. Here, we tested the hypothesis that quantitative mRNA assays for B lineage cells in blood could serve as baseline predictors of therapeutic response to B cell depletion therapy in subjects with rheumatoid arthritis (RA). In samples from the REFLEX trial of rituximab in inadequate responders to antibodies to tumor necrosis factor-α, a 25% subgroup of treated subjects with elevated baseline mRNA levels of IgJ, a marker for antibody-secreting plasmablasts, showed reduced clinical response rates. There were no significant efficacy differences in the placebo arm subjects stratified by this marker. Prospective testing of the IgJ biomarker in the DANCER and SERENE rituximab clinical trial cohorts and the SCRIPT ocrelizumab cohort confirmed the utility of this marker to predict nonresponse to anti-CD20 therapy. A combination mRNA biomarker, IgJhiFCRL5lo, showed improved test performance over IgJhi alone. This study demonstrates that baseline blood levels of molecular markers for late-stage B lineage plasmablasts identify a ~20% subgroup of active RA subjects who are unlikely to gain substantial clinical benefit from anti-CD20 B cell depletion therapy.


Assuntos
Anticorpos Monoclonais Murinos/uso terapêutico , Antígenos CD20/imunologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Plasmócitos/imunologia , Biomarcadores/sangue , Linhagem da Célula/genética , Estudos de Coortes , Demografia , Feminino , Humanos , Cadeias J de Imunoglobulina/genética , Cadeias J de Imunoglobulina/metabolismo , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/sangue , RNA Mensageiro/genética , Receptores de Superfície Celular/imunologia , Receptores Fc , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rituximab , Resultado do Tratamento
20.
Bioconjug Chem ; 22(10): 1994-2004, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-21913715

RESUMO

Antibody-drug conjugates (ADCs) are designed to combine the exquisite specificity of antibodies to target tumor antigens with the cytotoxic potency of chemotherapeutic drugs. In addition to the general chemical stability of the linker, a thorough understanding of the relationship between ADC composition and biological disposition is necessary to ensure that the therapeutic window is not compromised by altered pharmacokinetics (PK), tissue distribution, and/or potential organ toxicity. The six-transmembrane epithelial antigen of prostate 1 (STEAP1) is being pursued as a tumor antigen target. To assess the role of ADC composition in PK, we evaluated plasma and tissue PK profiles in rats, following a single dose, of a humanized anti-STEAP1 IgG1 antibody, a thio-anti-STEAP1 (ThioMab) variant, and two corresponding thioether-linked monomethylauristatin E (MMAE) drug conjugates modified through interchain disulfide cysteine residues (ADC) and engineered cysteines (TDC), respectively. Plasma PK of total antibody measured by enzyme-linked immunosorbent assay (ELISA) revealed ∼45% faster clearance for the ADC relative to the parent antibody, but no apparent difference in clearance between the TDC and unconjugated parent ThioMab. Total antibody clearances of the two unconjugated antibodies were similar, suggesting minimal effects on PK from cysteine mutation. An ELISA specific for MMAE-conjugated antibody indicated that the ADC cleared more rapidly than the TDC, but total antibody ELISA showed comparable clearance for the two drug conjugates. Furthermore, consistent with relative drug load, the ADC had a greater magnitude of drug deconjugation than the TDC in terms of free plasma MMAE levels. Antibody conjugation had a noticeable, albeit minor, impact on tissue distribution with a general trend toward increased hepatic uptake and reduced levels in other highly vascularized organs. Liver uptakes of ADC and TDC at 5 days postinjection were 2-fold and 1.3-fold higher, respectively, relative to the unmodified antibodies. Taken together, these results indicate that the degree of overall structural modification in anti-STEAP1-MMAE conjugates has a corresponding level of impact on both PK and tissue distribution.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacocinética , Antígenos de Neoplasias/imunologia , Imunoconjugados/química , Imunoconjugados/farmacocinética , Oligopeptídeos/química , Oligopeptídeos/farmacocinética , Oxirredutases/imunologia , Animais , Anticorpos Monoclonais/sangue , Dissulfetos/química , Humanos , Imunoconjugados/sangue , Masculino , Modelos Moleculares , Oligopeptídeos/sangue , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...